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Abstract. Systems of Liouville equations are generated by isospectral transforms of
the Schr̈odinger operator and describe the isospectral evolution of both a potential and
eigenfunctions. Relations of these equations with the McKean–Trubowitz isospectral flows
are studied. The role of these flows among other isospectral flows is discussed.

1. Introduction

The Darboux transform [1] is well known in mathematical physics. If a solutionψ0(x) of
the Schr̈odinger equation for a given operatorĤ0 is known, then this transform provides a
family of operatorsĤ whose spectrum coincides with that ofĤ0, except for one (added
or removed) eigenvalue. If all the eigenfunctions ofĤ0 are known, then the Darboux
transform allows us to get eigenfunctions of the operatorĤ [2].

Thus, the Darboux transform is closely related to the notion ofan isospectral transform
of the Schr̈odinger operator.

The relations of this transform and its generalizations [3, 4] with other approaches that
allow one to construct families of isospectral Schrödinger operators were analysed in [5]
(see also [6] and the bibliography therein). The factorization of the Schrödinger operator
[7, 8], also related to the Darboux transform, is successfully used in the isospectral problem
[9]; in its turn, it provides a basis for the supersymmetry theory [10, 11] and the dressing
chain method [12]. Naturally, I would like to note also a method that uses nonlinear Fock
shift operators [13].

Traditionally, the Darboux transform is not associated with anyevolutionaryformulation
of the isospectral problem (the deformation of the potential as well as the eigenfunctions
does not obey any partial differential equations).

On the other hand, isospectral properties of the Schrödinger operator play an extremely
important role in the soliton theory (in particular, in the inverse scattering transform)
[14, 15], where they are related to the existence of soliton solutions of integrable evolution
equations; the list of such equations is well known [16].

It has been known since Poincaré [17] that the stationary Schrödinger equation is
equivalent to the integrable Liouville equationSxt = expS wheret is an implicit parameter
of the Schr̈odinger equation, which ‘specifies’ its particular solutions for one and the same
potential. Recently the relation between these two equations was analysed in detail and
generalized by Santini in [18]. In this paper we discuss how this simple relation appears
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in isospectral transforms of the Schrödinger equation and allows one to obtain Liouville
equations for more complex isospectral ‘evolution’ of eigenfunctions and of a potential.

Recently, it was discovered [19] that there exists another branch of the isospectral
problem, which also leads to Liouville equations for a deformation of eigenfunctions and
a potential of the Schrödinger operator. It is related to an analysis of the flows that were
studied in detail by McKean and Trubowitz [20]:

Ut(x, t) = ∂

∂x

δĤ

δU
=
∑
k

τk[ψ
2
k (x, t)]x. (1.1)

(ψk are eigenfunctions of the operator̂H = − 1
2∇2

x + U(x, t); τk are numbers,t is a
parameter.) As was shown in [20], such flows are associated with an isospectral deformation
of the eigenfunctions and of the potential in the parametert (many mathematical aspects of
this deformation were later thoroughly studied by Levitan [21]). The authors of [19] have
found that this deformation is governed by a system of coupled evolutional equations of
the Liouville kind; in particular, in the case of ‘individual flow’ (in terms of [20];τn = 1;
τk = 0, k 6= n) the integrable Liouville equation arises. The ‘two-level’ flow (τn 6= 0 and
τm 6= 0; τk = 0, k 6= n,m) is studied in detail in [22]; it is shown there that in this case
the coupled evolutional equations can be split into two independent integrable Liouville
equations for special combinations of the eigenfunctionsψn, ψm and their derivatives; the
same equation governs a certain function of the potentialU(x, t).

In this paper we try to establish relations among the above-listed approaches to the
isospectral problem for the Schrödinger operator: the Darboux transform, the ‘evolutional
approach’ leading to the Liouville equations, and the McKean–Trubowitz flows (in what
follows they will be referred to as ‘MKT flows’).

The paper is arranged as follows. In section 2 we briefly recall a correspondence
between the Schrödinger equation and the Liouville equation; we also establish relations
of functions that are obtained by the Darboux transform of solutions to the Schrödinger
equation, with solutions of the Liouville equation. In sections 3 and 4 these relations are
illustrated by examples of simple and double (‘cross’) Darboux transforms. In both the cases
the Liouville equations that govern the isospectral deformation are derived; they coincide
with the equations that arise in the ‘evolutional approach’ if the MKT flows are used. In the
concluding section we discuss the place of the MKT flows (and, therefore, of the Liouville
equations) in the general context of the isospectral problem.

2. Relation of Liouville equations to the Darboux transform for Schrödinger
operators

Let us recall a relation between the Schrödinger and Liouville equations [17, 18]. Write
down the Schr̈odinger equation for an arbitrary triplet{8(x, t), E(t), V (x, t)} (t is a
parameter):

− 1

2

8xx

8
+ V = E. (2.1)

Demand that parameterE and potentialV do not depend ont (E = constant;V (x, t) ≡
V (x)); then (

8xx

8

)
t

= 0. (2.2)
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This equation can be equivalently rewritten as an equation for the functionF ≡ 1/82:(
Fx

F

)
t

= h(t)F (2.3)

whereh(t) is an arbitrary function (of course,t can be renormalized, soh(t) can be set
to ±1). Equation (2.3) reduces to the classical form of the integrable Liouville equation
Sxt = expS by a simple substitution of the typeF −→ expS; for brevity, we will also call
it ‘the Liouville equation’.

For convenience, let us introduce an operator of ‘logarithmic derivative’ Dlog: Dlogb ≡
bx/b ≡ (ln |b|)x ; so the Liouville equation (2.3) can be written in the form

∂

∂t
DlogF = h(t)F.

Naturally, solutions of equations (2.2) and (2.3) are also in correspondence to each
other. Solving (2.2), we get a well known general two-parameter family of solutions to the
Schr̈odinger equation withfixed potentialV and parameterE:

8(α,γ )(x, t) = 80(x)γ (t)

(
1+ α(t)

∫ ∞
x

dx ′

[80]2

)
(2.4)

where80(x) is any particular solution to this equation (withα = 0). It is easy to verify that
the substitution 1/82 ⇒ F in this expression gives us a general solution to the Liouville
equation (2.3):

F (α,γ )(x, t) = F 0(x)

γ 2(t)

1

[1+ α(t) ∫∞
x
F 0 dx ′]2

(2.5)

where one should identifyγ 2(t) with h(t)/2α′(t). It is clear that in the family of solutions
(2.4) only the parameterα(t) is essential: since we deal with a linear ODE, the second
parameter determines a magnitude of a function. Settingγ = 1 and choosingh(t) = 2α′(t),
we get a correspondence betweenone-parameterfamilies8(α) andF (α) of solutions to the
Schr̈odinger and Liouville equations.

Thus, the evolution of the functionF (α) = 1/[8(α)]2 in t obeying the Liouville
equation (2.3) corresponds to a continuous variation of the parameterα(t) in the family8(α)

of solutions to the Schrödinger equation withfixed potential (this potential is determined
by the function8(0)).

Now consider how the above correspondence manifests itself in isospectral transforms
of the Schr̈odinger operator. Let8n be solutions (not eigenfunctions) of the Schrödinger
equation for a certain fixed potentialV (x) that correspond to a set of parameters{En}.
Consider any transformT that translates solutions8n to eigenfunctionsψn of the
Schr̈odinger operator with another potentialU and respectiveeigenvaluesEn: T [8n] ⇒ ψn;
relation between potentialsU andV can also be written as a transform:T̃ [V ] = U . Let
the transformT be N -parameter with parameters{α1, α2, . . . , αN }. Demand that for the
Schr̈odinger operator with new potentialU the rest of the spectrum does not depend on these
parameters. Thus we have animplicit N -parameter isospectral deformation of potential
U = U(x;α1, . . . , αN) and, accordingly, an isospectral deformation of eigenfunctions
ψn = ψn(x;α1, . . . , αN) (figure 1).

If an inverse transformT−1 is defined then the isospectral deformation determined by
T can be madeexplicit:

ψn(x;α1, . . . , αN) = T(α1,...,αN )[8n(x)]

= T(α1,...,αN )T
−1
(β1,...,βN )

[ψn(x;β1, . . . , βN)]. (2.6)
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Figure 1. Isospectral transform (vertical fat arrow) generated by a family of solutions to the
Schr̈odinger equation with a fixed potential and parameterE (schematically).

Let transformT be determined byN solutions8n to the Schr̈odinger equation for
potentialV , which correspond to an arbitrary set{En; n = k1, k2, . . . , kN }; furthermore,
let the parametrization of this transform be determined by the parameters{αn; n =
k1, k2, . . . , kN } of those essentially one-parameter solutions. We know already that all the
functionsFn = 1/82

n = 1/(T−1[ψn])2 ‘evolve’ obeyingN Liouville equations

∂

∂tn
DlogFn = εnFn n = 0, 1, . . . εn = ±1 (2.7)

each with its own ‘time’tn = tn(αn). Note, that one can take a common time in these
equations, introducing parametersτn: tn = 2τnt :

∂

∂t
DlogFn = 2εnτnFn n = 0, 1, . . . εn = ±1. (2.8)

(The number coefficient is introduced to compare below with already known results.)
We can summarize the above reasonings in the form of the following

Statement. If the transformT is defined as stated above, then the evolution of the
eigenfunctionsψn(x; {αi}) = T{αi }T

−1
{βi }[ψn(x; {βi})] of the Schr̈odinger operator with

potentialU(x; {αi}) = T̃V (x) in their parameters is isospectral, and the dependence of each
function Fn(x;αn) = 1/(T−1[ψ(x; {αi})])2 on its only parameterαn obeys the Liouville
equation.

3. Simple Darboux transform and ‘individual’ MKT flow

Consider a stationary potentialV : Vt = 0. Fix a value ofEn and take some solution80
n

of the Schr̈odinger equation with the potentialV for the parameterE = En (later on this
value will become annth eigenvalue). Let80

n satisfy the following boundary conditions:
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80
n(x → ±∞) → ±∞; no other restrictions are now put on80

n. The associated one-
parameter solution is

8(α)
n = 80

n

(
1+ α

∫ ∞
x

dx ′

[80
n]2

)
. (3.1)

As an isospectral transform we will use the simple Darboux transform, determined by
the function8(α)

n ; this function itself is transformed in this procedure as follows:

8(α)
n ⇒ ψ(α)

n =
1

8
(α)
n

= 1

80
n(1+ α

∫∞
x

dx ′ [80
n]−2)

= ψ0
n

1+ α ∫∞
x

[ψ0
n ]2 dx ′

. (3.2)

The new functionψ(α)
n is an eigenfunctionof the Schr̈odinger operator with the new one-

parameter potential

U(α) = V − ∂

∂x
Dlog8

(α)
n (3.3)

for the same valueEn (which is now an eigenvalue).
It should be noted here that we use the Darboux transform formally; we do not dwell

on singularities in8n as well as inV (which are inevitable if we take eigenvaluesEn with
n > 0, so thatψn has zeros). But the final evolutional equations that are obtained as a result
of this procedure coincide with those derived in [19, 22] using another approach (this will
be discussed below) where they are proved to be correct for arbitraryn; which allows one
to believe that such a free usage of the Darboux transform is not dangerous here. Note also
that a profound study of singularities that appear in the Backlund transforms can be found
in the paper [23].

Having made these remarks, return to formulae (3.2), (3.3). Now let us use the
following fact: since8(α)

n is a one-parameter solution of the Schrödinger equation with
the fixed potentialV , the functionFn = 1/{8(α)

n }2 is a solution to the Liouville equation
(DlogFn)t = 2τnFn, wheret ≡ α.

This means that the function{ψ(α)
n }2 = 1/{8(α)

n }2 is exactly a solution to the Liouville
equation:

∂

∂t
Dlog{ψ(α)

n }2 = 2τn{ψ(α)
n }2. (3.4)

Thus, we have found that the isospectral deformation specified by the Darboux transform
can be treated as being induced by the Liouville equation (3.4) for the functionψ2

n .
Now let us construct an expression forUt . The potentialU depends ont through the

parameterα(t) ≡ t of the Darboux transform; see equation (3.3). Then forUt we get the
expression:

Ut = − ∂2

∂x∂t
Dlog8

(α)
n . (3.5)

On the other hand, we have the Liouville equation(DlogFn)t = 2τnFn for the function
Fn = 1/{8(α)

n }2, which can be rewritten in the form

∂

∂t
Dlog8

(α)
n = −

τn

[8(α)
n ]2

(3.6)

so we obtain

Ut = ∂

∂x

{
τn

[8(α)
n ]2

}
. (3.7)
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Since8(α)
n = 1/ψ(α)

n , we can defineUt in a self-consistent way through the eigenfunction
ψn of the Schr̈odinger operator with potentialU :

Ut = τn{ψ2
n}x. (3.8)

This formula is well known: it determines the ‘individual’ MKT flow (1.1) [20]. And
otherwise, as shown in [19], it is equation (3.4) that describes the isospectral evolution of
the eigenfunctionψn in the case of the ‘individual’ MKT flow. Thus, in the caseN = 1
we have established a direct correspondence of the above scheme (which uses the relation
between the Darboux transform of the general solution to the Schrödinger equation and the
Liouville equation) to the ‘evolutional’ description [19] of the isospectral deformations that
are defined by the MKT flows.

4. The cross Darboux transform and two-level MKT flow

Consider apair of solutions80
n,m to the Schr̈odinger equation for a stationary potentialV .

Associated one-parameter solutions are given by the expressions:

8(α)
n = 80

n

(
1+ α

∫ ∞
x

dx ′

[80
n]2

)
(4.1)

8(β)
m = 80

m

(
1+ β

∫ ∞
x

dx ′

[80
m]2

)
. (4.2)

Let us make acrossDarboux transform (‘theX-Darboux transform’) on the pair8(α)
n , 8(β)

m ;
the formulae of this transform have the form:

8(α)
n ⇒ ψ(α,β)

n = − 8
(β)
m

[8(α)
n ,8

(β)
m ]

(4.3)

8(β)
m ⇒ ψ(α,β)

m = + 8(α)
n

[8(α)
n ,8

(β)
m ]

. (4.4)

(Here the standard notation for the Wronskian of two functions was used: [a, b] ≡
abx − axb.) Substituting expressions (4.1), (4.2) for the one-parameter solutions in the
right-hand sides of equations (4.3), (4.4), we get the relations:

ψ(α,β)
n = fn(80

n,8
0
m;α, β) (4.5)

ψ(α,β)
m = fm(80

n,8
0
m;α, β). (4.6)

In turn, the functions80
n, 8

0
m are related to the functionsψ0

n , ψ0
m by the inverseX-Darboux

transform:

ψn ⇒ 8n = + ψm

[ψn,ψm]
(4.7)

ψm ⇒ 8m = − ψn

[ψn,ψm]
(4.8)

(hereafter for brevity the superscripts(α, β) in right-hand sides are omitted), so relations
(4.5), (4.6) can be written in the form:

ψ(α,β)
n = f̃n(ψ0

n , ψ
0
m;α, β) (4.9)

ψ(α,β)
m = f̃m(ψ0

n , ψ
0
m;α, β). (4.10)

Since the dependencies̃fn, f̃m are quite cumbersome, we will not write down explicit
expressions.
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The functionsψ(α,β)
n , ψ(α,β)

m will be eigenfunctions of the Schrödinger operator with the
two-parameter potential

U(α,β) = V − ∂

∂x
Dlog[8(α)

n ,8
(β)
m ]. (4.11)

On the other hand, since the functions8(α)
n , 8(β)

m are one-parameter solutions to the
Schr̈odinger equation with the fixed potentialV , the functionsFn ≡ [8(α)

n ]−2 and
Fm ≡ [8(β)

m ]−2 are solutions to the corresponding Liouville equations:

∂

∂tn
DlogFn = εnFn εn = ±1 (4.12)

∂

∂tm
DlogFm = εmFm εm = ±1 (4.13)

tn = 2α, tm = 2β. Using the formulae for the inverseX-Darboux transform (4.7), (4.8) we
can express the functionsFn,m in terms of the transformed functionsψ(α,β)

n , ψ(α,β)
m ; then the

Liouville equations forFn,m can be rewritten as follows:

∂

∂t
Dlog

{
[ψn,ψm]

ψn

}2

= cnεn
{

[ψn,ψm]

ψn

}2

(4.14)

∂

∂t
Dlog

{
[ψn,ψm]

ψm

}2

= cmεm
{

[ψn,ψm]

ψm

}2

(4.15)

where the common ‘time’t is introduced by the scaling transformst = tn/cn = tm/cm;
cn, cm = constant.

Thus, in the case of the cross Darboux transform the isospectral deformation of
the eigenfunctions corresponds to the evolution of mixed functions([ψn,ψm]/ψm)2 and
([ψn,ψm]/ψn)2 that obeys two independent Liouville equations that can be easily integrated.

Now let us build an expression forUt in this case and see which flow is related with the
above scheme ‘two one-parameter solutions of the Schrödinger equation for a generating
potential+ the X-Darboux transformH⇒ two integrable Liouville equations’.

The X-Darboux transform of the potentialV is executed in accordance with
equation (4.11); differentiating it byt and rearranging (taking into account the Schrödinger
equation) we find that the expression forUt has the form

Ut = −21nm

∂

∂x

{(
8n8m

[8n,8m]

)2
∂

∂t
[Dlog8n − Dlog8m]

}
(4.16)

(for brevity superscripts are omitted;1nm ≡ En−Em). The equations for the functions8n

and8m can be written in the form

∂

∂t
Dlog8n = − τn

21nm

1

82
n

(4.17)

∂

∂t
Dlog8m = + τm

21nm

1

82
m

. (4.18)

Here we used an arbitrariness of the functionshn,m(t) in equations (2.3) (and, thus, our
freedom in choosing the constants and the signs in the right-hand sides when we scale the
time); the signs are to meet the condition that those equations transform to each other by
the changen⇔ m (taking into account that1nm = −1mn). Then we get

Ut = ∂

∂x

{(
8n8m

[8n,8m]

)2 [
τn

82
n

+ τm

82
m

]}
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= ∂

∂x

{
τn

(
8m

[8n,8m]

)2

+ τm
(

8n

[8n,8m]

)2
}
. (4.19)

Finally, using the formulae for the double Darboux transform from8n,m to ψn,m, we find
a self-consistent expression forUt :

Ut = τn{ψ2
n}x + τm{ψ2

m}x. (4.20)

Thus, in the caseN = 2 as well as in the caseN = 1 the self-consistent expression for
Ut that arises in the scheme using the Liouville equations is exactly the expression for the
McKean–Trubowitz flow.

On the other hand, it can be shown [22], that equations (4.14), (4.15) (withεnεm < 0)
arise as a result of splitting the coupled evolutional equations that describe the isospectral
deformation of the functionsψn(x, t), ψm(x, t) [19], if that deformation is defined by the
MKT flow (4.20).

Solutions of these equations written in the form (4.17), (4.18) are as follows:

1

82
n

= +2
∂

∂t1
Dlog

[
1− 1

2

∫ t1

0
expg1(t

′) dt ′
∫ ∞
x

1

82
n

∣∣∣∣
t=0

dx ′
]

(4.21)

1

82
m

= −2
∂

∂t2
Dlog

[
1+ 1

2

∫ t2

0
expg2(t

′) dt ′
∫ ∞
x

1

82
m

∣∣∣∣
t=0

dx ′
]

(4.22)

wheret1 = τn/1nm t , t2 = τm/1nm t ; g1 andg2 are arbitrary functions oft . Denoting the
right-hand sides of these solutions byF1 andF2, respectively, one can write final formulae
for the isospectral deformation of the eigenfunctions in the case of the two-level MKT flow:

ψn = 1√
F1
∫∞
x

dx ′√
F1F2

ψm = 1√
F2
∫∞
x

dx ′√
F1F2

. (4.23)

Thus, the direct correspondence between the above scheme ‘one-parameter solutions
of the Schr̈odinger equation+ the Darboux transform⇒ the Liouville equations’ and the
evolutional scheme, in which the isospectral evolution is specified by the MKT flows, is
established in the casesN = 1, 2. It can be assumed with great confidence that this
correspondence is valid in the general case as well.

5. Conclusion: McKean–Trubowitz flows among other isospectral flows

Let us try to clearly ascertain the place of the McKean–Trubowitz flows in the general
isospectral problem. Consider an arbitrary relation of the form:

Ut = F(U,Ux, . . . ; {ψn}, {(ψn)x}, . . .) (5.1)

whereψn are eigenfunctions of the Schrödinger operator with potentialU . Assume that the
functionF can be represented as a flow density, i.e. as a gradient of a variational derivative
for a certain functional. Then one can treat relation (5.1) as a flow. Under which conditions
is this flow related to anisospectraldeformation of a potential and eigenfunctions in the
parametert? As can be easily derived from (2.1), the condition

(En)t = 0 ∀t (5.2)

leads to the system of equations∫ +∞
−∞

Utψ
2
n = 0 n > 0 (5.3)
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so, all functionalsF that specify isospectral flows are to satisfy the following system of
equations: ∫ +∞

−∞
Fψ2

n = 0 n > 0. (5.4)

In other words, all isospectral flows are to belong to the orthogonal complement to the set
{ψ2

n}.
Differentiating (2.1), we get the following equations:

1
8(ψn)

2
xxx − 1

2Uxψ
2
n − (U − En)(ψ2

n)x = 0 n > 0 (5.5)

which can be rewritten in the form

L[ψ2
n ]x = En[ψ2

n ]x n > 0 (5.6)

if one introduces the integro-differential operator

L ≡ − 1
8D

2+ 1
2UxD

−1+ U (5.7)

whereDg(x) ≡ dg/dx, D−1g(x) ≡ ∫ x−∞ g(x ′) dx ′ (this observation is usually assigned to
Hermit [24]).

OperatorL has two important properties†.
(1) The functions [ψ2

n ]x are its eigenfunctions; they correspond to the eigenvaluesEn;
this fact is represented by formula (5.6). Thus, if the set of pairs{(Em,ψm)} is a set of
eigenelements for the operatorH = − 1

2D
2 + U , then the set{(Em, [ψ2

m]x)} is a set of
eigenelements for the operatorL. Note thatL is not an Hermitian operator, so the set
[ψ2

n ]x does not have to be complete.
(2) ∫ +∞

−∞
ψ2
nLf (x) dx = En

∫ +∞
−∞

ψ2
nf (x) dx n > 0 (5.8)

for a wide class of functionsf (x) (this class includes functions that grow at infinity slower
than the exponential). This implies that if some relationUt = F defines an isospectral
flow, then all the flowsUt = LkF , k > 0 are also isospectral, since conditions (5.3) are
satisfied for all of them; this fact is used in constructing hierarchies of integrable evolutional
equations. Because of this property the operatorL is often calledthe recursion operator‡.

Compare two elementary isospectral flows (this implies that they satisfy equation (5.3)).
The first of them is the shift flow

Ut = cUx. (5.10)

It can be shown that
∫ +∞
−∞ Uxψ

2
n dx always vanishes (in the same class of potentials that grow

slower than the exponential); this simple result immediately follows from equation (2.1).
But usually, to avoid a singularity int , one requires a ‘good’ behaviour ofUx at infinity (in
particular, the conditionUx → 0 asx →±∞ specifies the class of scattering potentials).

Starting with the shift flow (5.10) and sequentially applying the recursion operatorL, one
builds a hierarchy of KdV flows:Ut = c0Ux,Ut = c1(Uxxx + 6(U2)x), . . . , Ut = cmLmUx .
Evidently, all those flows lie in the orthogonal complement to the set{ψ2

n}.
† A wide list of its properties can be found in [16].
‡ Note that the operatorL can be written in the following simple symmetric form:

L = − 1
8D

2 +
√
UD
√
UD−1. (5.9)

(HereU is assumed to be positive; the generalization to an arbitrary potential is evident.)
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Figure 2. Isospectral flows: the McKean–Trubowitz
flow as an ‘eigenflow’ of the recursion operatorL.

The second ‘elementary’ type of isospectral flows is that studied by McKean and
Trubowitz in [20]:

Ut =
∑
n

τn[ψ
2
n ]x (5.11)

(τn are arbitrary numbers); it is not difficult to prove that∫ +∞
−∞

ψ2
n [ψ2

m]x dx = 0 n,m > 0 (5.12)

by virtue of equation (2.1). In other words, the sets{ψ2
n} and {[ψ2

n ]x} lie in orthogonal
subspaces; thus the necessary condition of isospectrality for the flows (5.11) is satisfied.

Note two important properties of MKT flows.
(a) They are defined on eigenfunctions (which always ‘behave well’), without using the

potential. Hence, such flows exist for potentials that grow at infinity (e.g. for the harmonic
oscillator) as well as for scattering potentials. The isospectral problem for both types of
potentials was analysed in [19]; it was shown there, that the deformation of a potential
induced by those flows involves a splitting off of a local potential well that asymptotically
takes a reflectionless soliton form (−γ 2 cosh−2 γ ξ ). It is of interest, that this result holds for
a wide class of models, including the harmonic oscillator; a particular choice of a potential
determines only how the parameters of this soliton depend on the parametert .

(b) As follows from the first property of the recursion operatorL, the functions [ψ2
n ]x

are its eigenfunctions. This means that, starting with this flow, one cannot build anL-
hierarchy: the operatorL simply changes the‘weights’τn, but the flow remains related to
the linear envelope{[ψ2

n ]x}. In contrast, elements of a function space that are associated
with different flows of the KdV hierarchy, are sequentially mapped onto each other by the
operatorL (figure 2).

Thus, ‘from the viewpoint’ of the recursion operatorL, the MKT flows can be called
its ‘eigenflows’; this explains their central role (in that sense) in the theory of isospectral
transforms.

To conclude, note that the two above elementary isospectral flows can coincide. As
is well known (see for instance [16]), the reflectionless soliton potentials can be written
in the form U = 2

√
2
∑N

n=0

√−Enψ2
n (where the sum is taken over all discrete states

of the Schr̈odinger operator). Hence, for these potentials the MKT flow with weights
τ (0)n = c

√−En degenerates into the simplest shift flow; therefore, all the higherkth flows
of the KdV hierarchy coincide with an MKT flow with proper weightsτ (k)n = c

√−En ·Ekn.
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